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Array responses for plane and spherical incidence 

Guy M. Cross* 

ABSTRACT 

The design of array filters for attenuation of source- 
generated seismic noise is founded, almost without 
exception, on the assumption of plane-wave inci- 
dence. We examine the theoretical limitations of this 
assumption and assess their practical significance. A 
time-domain array response is developed, incorporat- 
ing spherical wavefront geometry and divergence. 
Departures from conventional plane-wave response 
are related to systematic differences between the spec- 
tral composition of respective waveforms within the 
array’s aperture. The study also develops a hybrid- 
array response based on a modified plane-wave as- 
sumption, retaining plane wavefront geometry but 
incorporating a model-consistent approximation to 
spherical divergence. Deviations between the spheri- 
cal-wave response and those arising under plane-wave 
assumptions are analyzed in terms of effective imple- 
mentation errors required to compensate. Analysis 
reveals that the magnitude of these effective deviations 
can significantly exceed those expected for actual 
implementation errors. Findings establish that errors 
stemming from a plane-wave approximation are con- 
trolled by the ratio of reflector depth to aperture width 
and diminish as the distance between the source and 
array midpoint becomes large compared with the 
former parameters. 

INTRODUCTION 

The filtering properties of receiver arrays are well under- 
stood and typically characterized assuming plane-wave inci- 
dence over the length of the array (e.g., Parr and Mayne, 
1955; Holzman, 1963; Dobrin, 1976). As the scale of seismic 
application decreases, however, it is useful to review the 
basis of this assumption and assess both its theoretical and 
practical limitations. To this end, the apparent surface 
wavefield arising for a monochromatic spherical wave is 

compared with that predicted for plane-wave incidence. 
Corresponding apparent wavenumber distributions facilitate 
an initial assessment of the plane-wave approximation. Sub- 
sequently, we examine the influence of systematic devia- 
tions between these apparent wavefields on the output of a 
line array of equispaced, uniformly effective receivers. 

Viewed as a spatial filter, the array’s response is deter- 
mined completely by the number of elements, their relative 
weighting, and spatial distribution. The relative attenuation 
of plane and spherically incident waves depends on the 
spectral composition of associated apparent waveforms 
within the aperture of the array. Alternatively, array atten- 
uation properties can be related to the time-dependent 
variability of these apparent waveforms and, consequently, 
it is also useful to characterize the array’s time-domain 
response. In addition to the distribution and weighting of 
individual elements, the time-domain impulse response in- 
corporates wavefront geometry and spatial amplitude depen- 
dence. As a result, distinct responses arise in connection 
with plane and spherical incidence. Examination of array 
filters in both spatial and temporal contexts reveals that the 
actual attenuation of a spherical wave can deviate apprecia- 
bly from that predicted assuming plane incidence. 

Although the following analysis is illustrated on a scale 
reflecting archaeological application, the findings are of a 
general nature and may be appropriately scaled as neces- 
sary. 

APPARENT WAVEFIELDS 

Consider a monochromatic spherical wave of the form 

UO 
$,(x, y, z, t) = G H t - 1: cos [ZTk(r - vt)] 

[ 1 
(1) 

V 

emanating from an image source located at x, , y, , z, within 
a homogeneous, isotropic half-space having velocity v. 
Here, U. = 41rui denotes the surface displacement of a 
point source having initial outward radial displacement u. , k 
is the linear wavenumber, r = [(x - x,)* + (y - Y,)~ + 

(z - z,) 1 2 “’ is the distance from the source to an arbitrary 
location x, y, z and 
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0, 7 < 0; 

H[?] = 1 112, 7 = 0; 

1, r>o 

is the Heaviside step function. Spatial coordinates are spec- 
ified in relation to a rectangular coordinate system having its 
origin at the surface and z increasing with depth as illustrated 
in Figure 1. 

Neglecting free surface interaction and given that suffi- 
cient time has elapsed for incident energy to extend over the 
region of interest, we take H[r - r/u] = 1, obtaining 

UC’ 
4JS(X> Y) = 4,, cm [+,(x, Y)l 

for the instantaneous apparent wavefield detected by omni- 
directional sensors on the surface (z = 0). The associated 
phase function is 

$,(x, y) = 25?k(r - IIt), (3) 

where r = [(x - x,~)’ + ( y - Y,~)’ + z:] “‘. Neglecting the 
minor influence of spherical divergence, the local apparent 
wavenumber in the x-direction follows from equation (3) as 

1 a+,(~, Y) k 
L,x(x, Y) = 2, ax = ; (x -x,,). (4) 

A similar expression arises for the local apparent wavenum- 
ber in the y-direction 

*ptx, Y) = 4 
7F 

ruc;s 8 cos [4,(x, Y)l, (7) 

where 

+,(x3 Y) = 2rk[e(x -x,) + m(y - ys) - nz.y - utl 
(8) 

is the associated phase function. Ignoring the minor influ- 
ence of gradual amplitude variation, the corresponding ap- 
parent local wavenumber distributions are 

1 a&(x, Y) 
&,x(x, Y) = 2, = k cos (Y ax (9) 

and 

1 w$(x, Y) 
~p,yb, Y) = 2, 

JY 
= k cos f3. (10) 

FIG. 1. Rectangular coordinate system for analysis of plane 
and spherical wavefronts emanating from an image source at 
x,, Ys, z,. Propagation vector n is normal to plane wave- 
fronts incident on the surface at x,, y, and has direction 
angles o, p, y. 

As an example, Figure 2 displays apparent surface wave- 
fields computed using equations (2) and (7) for spherical and 
plane-waves incident at a point x, = 1.7 m, ym = 0.0 m on 
the surface. Here, the source is located beneath the origin at 

1 a+,(~, Y) k 
&.?.(X> Y) = 2, 

aY 
= ; (Y - Y,). (9 

The associated plane-wave system incident at some point 
x,, , ylll on the surface is given by 

*D(x, Y, z, ?) = 
47Fr cos 0 

x cos {2mk[e(x -x,,) 

where 

+ m(y - Yr) + n(z - z.5) - utll, (6) 

e = cos (Y = (n * u,)/~n = (x,, - x,)/In 

m = cos p = (n * u?)/ln/ = (y,, - Yz,V)/lnl 

n = cos y = (n * ul)/ln = -z,/ln 

are direction cosines for the propagation direction vector n 
joining the source with the point of incidence as depicted in 
Figure 1 with u,, try, and uZ denoting unit vectors in the 
positive x-, Y-. and z-directions. Note that as a local 
approximation to the spherical wave, we take plane-wave 
amplitude and onset to depend on normal distance from the 
source r cos 0 = (r . n)/(n(, where 0 is the angle between the 
propagation direction vector and a position vector r, locating 
an arbitrary point x, y, z. This amplitude dependence is a 
logical modification to the conventional definition of plane 
waves, providing a reasonable approximation to the effect of 
spherical divergence in the vicinity of incidence while retain- 
ing plane-wave geometry. Where it is necessary to differen- 
tiate between this form and the conventional constant am- 
plitude plane wave, the former is referred to as a modified 
plane wave. 

Assuming, again, that sufficient time has elapsed to set 
H[t - r cos O/ZJ] = 1, the instantaneous apparent surface 
wavefield in the vicinity of incidence is 
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XS = 0.0 m, yS = 0.0 m, z, = 2.0 m and the incident 
wavenumber is k = 2.0 m-’ , implying a wavelength of 0.5 m. 

S(k,. k,.) = A(k.7 > k,.N’Il(k., , k?.) (13) 

A measure of the difference between apparent wavefields for where A(k,, k?) is the array’s transfer function defined by 

plane and spherical incidence is obtained by comparing the 
corresponding apparent wavenumber distributions defined 0(x, Y)C (14) 
by equations (4), (5), (9), and (IO). Local apparent wavenum- 

-ihN, 1 + $.?.I dx dJ 

bers arising for the spherically incident wave are depicted in 
Figure 3 and exhibit significant departures from the constant 

and q(k,v, I\,.) is the wavenumber-domain representation of 

values of EP,, i= 1.3 m-’ and KP,? = 0.0 mm’ for plane- 
Jl(x, y) given by its 2-D Fourier transform with respect to 

wave incidence. In the following section, a connection is 
spatial variables x and y. The array output s(x,,~, y,,,) is 

made between the nature of these deviations and the atten- 
obtained from the inverse Fourier transform 

uation properties of spatial arrays. +x +r 
S(X. y) = S(k.,, kY)e i?TT(k.(;\. + $3) dk., dky. 

SPATIAL ARRAY FILTERS II --x -1 
(15) 

In general, the spatial impulse response of a two-dimen- 
sional (2-D) receiver array can be described as 

For the sake of illustration, further treatment assumes a line 
array deployed along the x-axis, having an odd number of 

1 N 
equispaced elements and unit weighting. 

a(x, Y) =- C wj6(X - Xj> Y - Yj)> (11) 
On invoking the foregoing conditions, the array’s spatial 

Nj=l impulse response can be written as 

where N is the number of elements, Xj, yj are the coordi- 
nates of the jth element, wj is an associated weighting 
coefficient, and 6(x, y) is the 2-D Dirac delta function. The 
weighting coefficient incorporates factors including the sen- 
sitivity, directionality, coupling, and electrical connection of 
the jth receiver. If coordinates x,, y, specify the array 
midpoint, its instantaneous output is s(x, , y,), where 

s(x, Y) = a(x, y)**+(x* Y). (12) 

Here, I&(X, y) represents the instantaneous surface wave- 
field as described by equations (2) and (7) and ** denotes 2-D 
convolution. Alternatively, the filtering process can be de- 
scribed as 

1 (Iv I Ii? 
a(x)=- 2 6(x - jAx), (16) 

N j= -(N- 1112 

where Ax is a constant denoting the distance between 
adjacent receivers. The associated transfer function is 

(N IV2 

A(k,) = , A(k,),e’@(‘*’ = ; 2 p ~i27i~xjh*, (17) 
IV 

J = -CN I)12 

where 

1 A(k.,)l = ,’ s;n(;kk.;;) 
* 

-2.0 -2.0 
I I I I 

- 
I I 

_ _ 
-1.0 1.0 3.0 -1.0 1.0 

_ - 
3.0 

x (m) x (m) 
FIG. 2. (a) Apparent surface wavefields arising for a monochromatic spherical wave having its image source at depth z, = 2.0 
m beneath the origin. (b) Associated apparent wavefield assuming modified plane incidence at x, = 1.7 m, ym = 0.0 m as 
indicated by solid circles. Incident waves have A = 0.5 m. 



Spherical Wave-Array Responses 1297 

and 

i 

Ok n27r, sin (Nnk,Ax)lsin (i~TTk,~hx) 2 0; 
Wk., ) = 

5-r * n27r, sin (NTk,Ax)lsin (Tk.lAx) < 0 

are, respectively, the corresponding amplitude and phase 
spectra depicted in Figure 4 for the case N = 7. Note that 
the arbitrary constant ?n2~ allows some latitude in display- 
ing an acceptable phase spectrum. In addition to being an 
odd function, as required, the spectrum in Figure 4 is 
physically plausible as we shall find in a later section. It is 
also important to note that the receiver interval imposes a 
Nyquist wavenumber of k Wavenumbers exceed,ng Nk = 142Ax) so that kNAX = 0.5. 

N are spatially aliased in the 
process of filtering. 

ATTENUATION OF APPARENT WAVEFIELDS 

It is evident from the foregoing analysis that the relative 
attenuation of plane and spherically incident waves depends 
on the apparent wavenumber compositions of the respective 
surface wavefields. Consider, for example, apparent wave- 
forms arising along the x-axis in Figure 2. These waveforms 

are depicted in Figure 5 together with a cross-section 
through the earth model illustrating plane and spherical 
wavefront systems. It can be seen from this diagram that, 
despite gradual amplitude variation, modified plane-wave 
incidence yields a spatial waveform having a practically 
constant apparent wavelength 

h 
hp,r = ~ (18) 

cos (Y 

consistent with equation (9). where A = l/k is the wave- 
length of the incident wave. In contrast, spherical incidence 
yields a spatial waveform having variable apparent wave- 
length 

i\,,(X) = A 1 + 2 
2 I/? 

[ 01 X 
(19) 

as predicted by equation (4) for x, = 0. Consequently, a 
finite-length array deployed along the x-axis with midpoint at 
x,, samples a spatial waveform comprised of a continuous 
band of apparent wavenumbers rather than the single, 
unique wavenumber implied by plane incidence. Notice that 
m settmg x = x,, , equation (19) reduces to equation (18) and, 
thus, there is exact agreement between the corresponding 
spatial waveforms at the point of incidence as illustrated in 
Figure 5. Relative attenuation of plane and spherically 
incident wave depends on the nature of the departure of 
K.,..,(x) from ip..r = r,, ,x (x,,) over the aperture of the array. 
If the departure is insignificant, it is appropriate to assume 
plane-wave incidence and the corresponding attenuation 
may be read directly from the array’s amplitude spectrum for 
xp,.r. If, however, local apparent wavenumbers predicted by 

-27r - 
I I I ,,L 

-0.4 0.0 0.4 

FIG. 3. Local apparent wavenumber distributions in the (a) 
x-direction and (b) y-direction associated with the apparent 
surface wavefield in Figure 2a. Corresponding apparent 
wavenumbers for plane incidence are, respectively, k 
1.3 and k,,, = 0.0 m-t. Incident waves have k = f/i z 
2.0 mm’. 

0.0~1.0 t 
,’ 

’ ‘\ A \ I (a) 

FIG. 4. (a) Amplitude and (b) phase spectra for a linear 
receiver array having seven equispaced and uniformly effec- 
tive elements. The ordinate is the apparent wavenumber 
scaled by the detector interval Ax. The dashed spectrum 
indicates attenuation on a decibel scale truncated at -40.0 
dB. The phase angle is measured in radians. 
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equation (19) differ significantly from-K,,., , relative attenua- 
tion depends on the distribution of h,s,,(x) about ip,.r, as 
well as the array’s response characteristics. 

Figure 5 illustrates that x,,,(x) is less than iP,.l for x > x,, 
and exceeds zP,x for x < x,,~. It is also evident that the 
absolute difference /Ks,.r(~~,,, - E) - KPt_,l is greater than 

lL,s(x,, + e) - &,.x1 h w ere E is a positive constant and 
X ,11 * F 2 0. These observations are extended in Figure 6 by 
computing the average apparent wavenumber, El,, ( .T,,~ 1, 
over a range of fixed length windows as a function of the 
midpoint x,,~ . The mean value theorem for integrals yields 

where 6 = [(N - I )Ax]/2 is half the aperture length of an 
equispaced linear array having N elements separated by an 
interval Ax. Substituting equation (4) with X, = 0 and 
evaluating, yields the following expression for the average 
apparent wavenumber along the x-axis 

Finally, on expanding the square roots in the previous 
expression and retaining terms to second order in 6, we 
obtain the approximate relation 

k,,,(xm) = CL,(X,) - 
kx,S’ 

2(x’ + z2)3i2 
(22) 

1n 7 

1.0 
2 
x 

30.0 
x 
-3 

0.0 

E 
5 1.0 

iif 
0 

2.0 

I ib’ 1 I I I: I I I 

I .o 0.0 1.0 2.0 3.0 

FLG. 5. Apparent waveforms arising along the x-axis in 
Figures 2a (solid) and 2b (dashed) with a cross-section 
through the associated earth model depicting plane (dashed) 
and spherical (solid) wavefront systems for incidence at x = 
1.7 m. Reflected wavefronts emanate from an image source 
at z = 2.0 m associated with a point source at the origin and 
ideal reflection from a plane horizontal interface at z = 
1.0 m. 

Although, strictly speaking, this approximation is only valid 
for 6 6 (x,;, + ,7,‘)“‘, it provides useful insight on the 
relation between local and average apparent wavenumbers. 
As expected, lims,,, liY..,(x,,,) = cY,,s..r(~~,,I). More signifi- 
cantly, since the second term in equation (22) is positive 
valued, the magnitude of the average wavenumber impinging 
on a finite-length array is always less than that predicted for 
plane incidence. This conclusion is illustrated in Figure 6a 
where the average apparent wavenumber computed using 
equation (21) is displayed, together with the local plane- 
wave value (6 = 0). as functions of x,,, for fixed window 
lengths between 0.5 and 3.0 m. We observe that the differ- 
ence K,,.r(~,,I) - I? ,,,. I( s,,,), displayed in Figure 6b, is in all 
cases positive. The approximate expression (22) yields 
nearly indistinguishable results for 6 5 1 .O m. 

Given the nominally low pass nature of receiver arrays, 
the foregoing conclusion suggests that the actual attenuation 
of spherical waves is less than that predicted assuming plane 
incidence. As demonstrated in the previous section and 
illustrated in Figure 4, however, the amplitude spectra of 
spatial filters are generally multilobed. Consequently, al- 
though the envelope of these lobes decreases monotonically 
as the Nyquist wavenumber is approached, the attenuation 
can be high pass in nature over a limited band. Strictly 
speaking, the array output at an arbitrary midpoint x,,~ 
depends on the full wavenumber spectrum comprising the 
waveform within the array’s aperture. But, having issued 

_ 1.6 
r 

g 0.8 
x 

Ir" 0.0 

x_ .I2 
I+. .08 

x .04 
u 

.oo 

d 

0.0 1.0 2.0 3.0 

I 
0.0 1.0 2.0 3.0 

Xm (ml 

F_IG. 6. (a) Comparison between local apparent wavenumber 
k,,, = k, ,,(x,=) at the array midpoint and average apparent 
wavenumber k, .(x,) for the solid waveform displayed in 
Figure 5. Averages are computed for a range of half _aperture 
values 6 = 0.0-1.5 m. Note that R = k,,,(x,,) = k,,,(x,) 
with 6 = 0.0 m. (b) Difference etween local and average tY 
apparent wavenumbers as a function of array midpoint 
location. 
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these qualifications, a useful empirical connection can be 
made between the average apparent wavenumber given by 
equation (21) and the corresponding attenuation. 

In Figure 7 we display filtered waveforms resulting on 
application of the spatial filter characterized in Figure 4 to 
apparent waveforms arising at the surface for modified plane 
and spherical waves in Figure 5. Results are also depicted for 
a conventional plane wave, and array lengths are consistent 
with those in Figure 6. For the case 6 = 0.25 m, the plane 
wave assumption is evidently adequate as there is no appre- 
ciable difference between filtered waveforms. As array 
length increases, results for modified and conventional plane 
waves remain approximately concordant, but significant 
deviations arise between these and the filtered waveform for 
spherical incidence. In particular, in the immediate vicinity 
of the origin, the attenuation of spherical waves can be 
severe in comparison with that predicted for plane inci- 
dence. Moreover, adjacent to this near source region, a zone 
develops wherein the attenuation of spherical waves is 
appreciably less than that predicted for plane incidence. 
Note that the presence of this region and its extent is directly 
related to the difference between R ( r ) and l-, ,.‘i ( I,,, ) as J * 171 

0.5 

0.0 

0.5 

0.0 

0.5 

0.0 

k0.25 

0.0 1 .o 2.0 3.0 
Xm 

charted in Figure 6b. Where the difference between the 
average apparent wavenumber and the corresponding value 
for plane incidence is large, the attenuation predicted assum- 
ing plane waves is too high. Beyond this region, EY,,Y(x,,,) 
approaches 6, ,.,( .Y,,~ ) asymptotically, and this convergence 
is associated with increased correlation between the filtered 
waveforms. 

In addition, although attenuation generally increases as 
<, ,.,( x,,,) approaches X for large .Y,~~, spatial aliasing becomes 
dominant for AX = h ,,,., (x,,,). While this effect is especially 
evident for 6 = 1.5 m in Figure 7, spatial aliasing occurs for 
6 > 0.75 m. In particular, for 6 = 1.0 m, A.Y = 0.333 so that 
the effective Nyquist wavenumber is XN = 1.5 mm’. Con- 
sequently. according to Figure 6 (6 = 0), plane waves are 
subject to spatial aliasing for s,,, beyond about 2.25 m. Thus, 
for plane incidence at, say, x,,, = 3.0 m, an apparent 
wavenumber of < ,,., (3.0) = I .66 rn-’ is aliased as approx- 
imately I .34 m -’ Of course, spherical waves are also 
subject to spatial aliasing but, as suggested by the positive 
valued difference between K,,,., and KY-,. , , the onset of aliasing 
occurs for _Y,,~ greater than that predicted for plane incidence 
and thereby, in general, has lesser effect at a given x,,, . For 
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0.0 

-\ [.:.:.:,:.:,:.:.; 
- \ ,.:.:.:.:.:.:.-] 6=1 .oo 

~~ 
t\::::::i:,:_‘:l 

,‘.‘.‘.‘,‘,‘. 
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FIG. 7. Filtered apparent waveforms assuming conventional plane (dotted), modified plane (dashed), and spherical (solid) 
Incidence. Unfiltered waveforms are depicted in Figure 5 for an array midpoint located at x,,, = 1.7 m. Note that the apparent 
waveform arising for spherical wave incidence (solid) in Figure 5 remains independent of array midpoint while plane incidence 
waveform (dashed) varies locally. The filter’s amplitude and phase spectra are displayed in Figure 4 and 6 = 6A.w/2 ranges from 
0.0 to I .5 m. Shading highlights the expanding region associated with attenuation levels consistently overestimated assuming 
plane incidence. 
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example, with 6 = 1.0 m, aliasing occurs for spherical waves 
beyond approximately 2.4 m compared with 2.25 m cited 
above for plane waves. 

In the following section, the foregoing conclusions are 
substantiated by transforming the spatial array response to 
corresponding time-domain representations for plane and 
spherical incidence. 

TIME-DOMAIN ARRAY FILTERS 

The output of an array as a function of time can be written 
as the convolution 

s(r) = a(t)**(t), (23) 

where a(r) is the local time-domain impulse response of the 
array and 6(t) is the time-dependent wave function detected 
at the array midpoint. The equivalent frequency-domain 
operation is 

where 

S(f) 

A(f) = 

= A(fN’(f), (24) 

c 

+I 
a(t)e 

-i??ifi dr 
(25) 

-I 

is the array’s transfer function and Y(f) is the frequency- 
domain representation of the wave function Q(t). The array 
output is obtained by the inverse Fourier transform 

s(t) = I += S(f)e’2”‘“r dj-. (26) 
-z 

In particular, the time-domain equivalent of equation (16) 
can be written as 

1 (Iv I)/2 

u(t) = - 2 

N j = -(N - I)/2 

a(j)S(t - tj), (27) 

where N is the number of receiver elements and a(j) is an 
amplitude coefficient specifying the amplitude of the incident 
wave as detected by the jth receiver measured relative to 
amplitude at the array midpoint x,. Similarly, tj is the 
effective time shift of the jth detector relative to transit time
measured at the array midpoint and is associated with the 
offset jAx from the midpoint in equation (16). 

Assuming plane incidence, the fixed interval Ax is related 
to a corresponding fixed time interval At,, _via a constant 
apparent horizontal phase velocity GP,X = flk,,, , where f = 
ku is the frequency of incident waves. Substituting equation 
(9) with x, = 0 yields 

u(xi + z,2) Ii2 
“)p.x = 

XVI 

and, thus, 

x,x Ax 
At, = 

u( x; + 25, “2 

(28) 

(29) 

Consequently, tj = jAt, in equation (27), yielding a time- 
domain impulse response for plane incidence that has a form 
resembling the corresponding spatial response except for the 

relative amplitude coefficient a(j). In fact, for a conven- 
tional plane wave, the relative amplitude coefficient is unity 
for all j. For spherical waves, on the other hand, the 
apparent velocity along the x-axis gs.r = f/E,,., is not a 
constant but depends on x as 

7,(x2 + Zf, “2 
7?.,.,(.Y) = (30) 

X 

As a result, the time increment associated with the fixed 
interval Ax depends on j and, thus, the time interval At,s(j) 
corresponding to a given offset jA.u is given by 

1 - J1.X X 

At., (A = ; cx2 + p, Ii2 dx 

= I_ {[(x,, + jAx)’ + ,?I’:? 
s - 14 + zy2}. (31) 

For spherical incidence, then, tj = At,!(j), yielding a 
time-domain impulse response having a fundamentally dif- 
ferent form than its spatial analog. 

On incorporating the appropriate relative amplitude coef- 
ficients for modified plane and spherical waves, 

(32) 

and 

x,; + z.; I 
Ii2 

a,(j) = 
(x,, + jAx)’ + Z: 

(33) 

respectively, the resulting array transfer functions for mod- 
ified plane and spherical incidence are 

, (N - IV? 

A,(f)=: c ap (jk -2m./jAl,, (34) 
N j= -(h’- IV? 

and 

(iv I112 

A,(f)=; c a, Me -i?nfAr, Cj) (35) 
J = -(N - II12 

The difference between these transfer functions is directly 
related to the departure of K,,X from K,,, within the aperture 
of the array and, consequently, to the observed deviation 
between [,,X(x,,) and K$,,(x,,) as discussed in the previous 
section. Amplitude and phase spectra computed from the 
foregoing transfer functions for N = 7, 6 = 1 .O m and x, = 
0.0, 1.0, 2.0, 3.0, 5.0, and 15.0 m are displayed in Figure 8. 
Spectra are also depicted for conventional plane-wave inci- 
dence as given by equation (34) with o(j) = 1. It is evident 
from these spectra that the filtered apparent waveforms 
depicted in Figure 7 for S = 1.0 m reflect changes in the 
array’s relative amplitude and phase response for plane and 
spherical incidence as a function of x,, Note that for 

Xl?l = 0.0 m, plane incidence implies an infinite horizontal 
phase velocity so that At, = 0.0. Consequently, the ampli- 
tude spectra for plane incidence have unit amplitude over all 
frequencies, whereas the corresponding spectrum for spher- 
ical incidence is less than unity at dc and decreases with 
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FIG. 8. Amplitude and phase spectra for time-domain array responses, assuming conventional plane (dotted), modified plane 
(dashed), and spherical (solid) incidence. A constant wave speed of 300.0 m/s is assumed, implying an incident wave frequency 
of 600 Hz. Spectra are computed with 6 = 1.0 m for array midpoint location of x, = 0.0, 1.0, 2.0, 3.0, 5.0, and 15.0 m. 
Amplitude spectra are displayed on a decibel scale arbitrarily truncated at -40.0 dB. Phase angles are measured in radians. 
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frequency over the range depicted in Figure 8. In particular the corresponding complex transfer functions in polar format 
for k = 2.0 m-’ and v = 300.0 m/s, f = 600.0 ss’, as in Figure 9. By nature, the imaginary part of the transfer 
indicating a relative attenuation of approximately 7 dB. function for conventional plane waves is identically zero 
Spectra for x,, = 1.0 m are of special interest as this and, consequently, corresponding phasor diagrams reside on 
midpoint value resides within the zone identified in the the real axis. Concurrently, the real component takes on the 
previous section with attenuation levels that are overesti- frequency-dependent value sin (NrfAtp)lN sin (rfAtp). As 
mated under a plane incidence assumption. Figure 8 substan- this quantity changes sign, the corresponding phasor dia- 
tiates this finding and indicates that the spherical wave is gram passes through the origin and the associated phase 
attenuated by approximately 12 dB compared with 24 dB and spectrum in Figure 8 jumps by -7~ radians. In fact, theoret- 
26 dB for modified and conventional plane waves, respec- ically, these phase discontinuities can take on an arbitrary 
tively. At X, = 2.0 and 3.0 m, the spectra for spherical wave value 7~ * n2-r radians but a constant decrement of r 
geometry progressively approach those predicted for plane radians is both physically plausible and consistent with 
incidence. Moreover, the amplitude spectra continue to phasor diagrams for modified plane and spherical waves. 
corroborate the sense of relative attenuation observed in Note that the phase spectra displayed in Figure 8 for 
Figure 7. Spectra are also displayed for x,, = 5.0 m and modified plane and spherical wave have been corrected for 
15.0 m to illustrate the continued convergence of associated meaningless wraps of 2~ radians introduced computationally 
array responses as the distance between the image source as the respective phasor diagrams cross the negative valued 
and array midpoint becomes large compared with the array’s real axis. Convergence of the complex array response for 
aperture width. It is evident from Figure 8 that the array’s spherical incidence to that for modified plane waves reflects 
modified plane-wave response is intermediate between those the significant influence of relative amplitude variation over 
for spherical and conventional plane waves. Interestingly, it the array’s aperture. 
is also apparent that the spherical wave response converges Despite the insight gained by treating the receiver array as 
more rapidly toward the modified plane-wave response than a time-domain filter, we should not lose sight of the fact that 
either of these converge with the response for a conventional the array is physically deployed in the spatial domain and 
plane wave. This observation is best illustrated by displaying affects a discrete sampling of the spatial wavefield while 

0.1 

0.0 

,O.l 

FIG. 9. Polar diagrams characterizing the complex transfer functions associated with the corresponding amplitude and phase 
spectra in Figure 8 for conventional plane (dotted), modified plane (dashed), and spherical (solid) incidence. Real and imaginary 
components of a complex transfer function A(f) are denoted by Re{A(f)} and Im{A(f)}, respectively. 
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responding continuously in time Consequently, while an 
appropriate Nyquist wavenumber is associated with the 
spatial interval separating adjacent elements of the array, the 
time-domain analogue is not a Nyquist frequency in the 
usual sense. Only subsequently, on digitizing the array’s 
analog output, does the possibility of temporal aliasing and, 
thus, a Nyquist frequency arise. Having made this distinc- 
tion, however, it is useful to consider the time-domain 
analogue of the Nyquist wavenumber associated with the 
spatial filter. We shall refer to this parameter as the pseudo- 
Nyquist frequency. 

For plane incidence, a pseudo-Nyquist frequency fhi is 
associated with the Nyquist wavenumber by 

ukhi 
fN,p(xm) = kNgp..r(X,n) = ~ b: + Z.;)“‘t 

XWI 
(36) 

where a,,,(~,) is the a pparent plane-wave velocity relating 
the constant spatial interval Ax, separating adjacent detec- 
tors, with the constant temporal interval At,. Using kN = 

1.5 m-’ from the previous section, effective pseudo-Nyquist 
frequencies for 6 = 1.0 m at x, = 0.0, 1.0, 2.0, and 3.0 m 
are, respectively, ~0, 1000, 640, and 540 ss’. Consequently, 
aliasing occurs only for the case X, = 3.0 m where the 
incident wave frequency f = 600 s-l aliases at approxi- 
mately 480 s -‘. More specifically, equation (36) confirms that 
the onset of aliasing occurs at approximately x,, = 2.25 m. 

For spherical incidence, the effective time interval be- 
tween successive array elements is nonconstant and, conse- 
quently, it is impossible to define a unique pseudo-Nyquist 
frequency. Instead, in analogy with the average apparent 
wavenumber considered in the previous section, we intro- 
duce an average pseudo-Nyquist frequency 
- 

.fN,s(xm) = kd,,,(X,n) 

[(x,, +s)2+zy-[(x, -s)2+z,2]1/2 

(x, + 6) I i zs + [(x, - s)2 + zy2 
+zsln ~ 

(XVI -6) ZS +[(x, +6)2+z,2]“2 ill ’ 
(37) 

where 

is the average apparent velocity as depicted in Figure 10. A 
computational comparison of equations (36) and (37) sug- 
gests that, in general, the onset of aliasing occurs at a higher 
frequency than predicted for plane incidence. This is illus- 
trated in Figure 10, where it is observed that fl,:,(x,,,) 
always exceeds am,,. The average pseudo-Nyqutst fre- 
quencies associated with these average apparent velocities 
are obtained by a constant scaling with the appropriate 
Nyquist wavenumber. Note that for -6 5 x, 5 6 the 
argument of the logarithm in equation (37) is negative, 
causing the average pseudo-Nyquist frequency to be unde- 
fined. Physically, this result reflects inclusion of x = 0, 

where lim,,, v,,~(x) = =, within the aperture of the array 
so that the average pseudo-Nyquist frequency over this 
region must also be infinite. 

CONCLUDING DISCUSSION 

The foregoing analysis identifies theoretical limitations on 
the plane wave assumption normally invoked when charac- 
terizing the attenuation properties of receiver arrays. While 
the array’s spatial response is uniquely defined by the 
number of elements, their relative weighting and spatial 
distribution, equivalent time-domain representations neces- 
sarily incorporate the geometry and spatial amplitude depen- 
dence of incident wavefronts. Consequently, as demon- 
strated above, distinct time-domain impulse responses arise 
in connection with plane and spherical incidence. Moreover, 
we find that this distinction is manifest spatially as a system- 
atic difference between the spectral compositions of associ- 
ated waveforms within the array’s aperture. Although both 
perspectives reveal that attenuation predicted assuming 
plane incidence can deviate appreciably from that experi- 
enced by a spherical wave, the practical significance of these 
deviations is difficult to appraise. 

Newman and Mahoney (1973) examined the influence of 
random implementation errors on the nominal response of 
uniform, linear tapered, and optimally weighted line arrays. 
Practical uncertainty and error in the effectiveness, position, 
and coupling of individual array elements was modeled by 
introducing random perturbations of 10 percent standard 
deviation about their nominal spatial distribution and weight- 
ing. While resulting deviations from the nominal response 
were found to be insignificant within the passband, pertur- 
bations had an appreciable effect beyond the first notch in 
the amplitude response, imposing a practical limitation on 
the rejection capabilities of the array. Newman and Ma- 
honey also acknowledged errors in design assumptions, 
including the simplifying assumption of plane-wave inci- 
dence, and suggested that such errors could be treated as 
equivalent implementation errors. For example, the re- 

_ _ 

& 4.0 

E 
5 2.0 
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0.0 1 .o 2.0 3.0 

Xm 
FIG. 10. Average apparent velocity for plane (dashed) and 
spherical (solid) incidence. Averages are depicted for half 
apertures of 6 = 0.5, I .O, and 1.5 m. Note that the plane 
incidence value is equivalent to the average apparent spher- 
ical wave velocity for 6 = 0.0 m. All curves approach infinity 
as x, approaches 6 and are arbitrarily truncated at 5.0 km/s 
for the purpose of illustration. 
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sponse of a uniform line array to spherically incident waves 
can be simulated, while retaining the plane-wave assump- 
tion, by redistributing individual elements on the appropriate 
arc of radius in the x-z plane and assigning variable weight- 
ing coefficients to account for spherical divergence. In- 
versely, by determining the magnitude of required depar- 
tures from a uniform line array, we can assess the relative 
significance of deviations from the plane-wave assumption 
compared with typical implementation errors. 

In Figure 1 la, the relative deviations of amplitude coeffi- 
cient, a,(j) and the effective time shift At,(j) from the 
respective values of unity and jAt, for conventional plane- 
wave incidence are displayed as a function of element 
position for array midpoints of 0.0, I .O, 2.0, and 3.0 m. Two 
important observations are made. First, the maximum effec- 
tive errors are significantly larger than the 10 percent per- 
turbations assumed by Newman and Mahoney for typical 
implementation errors, indicating that for small scale, near- 
source applications, implementation errors have a relatively 
minor influence compared with departures from design as- 
sumptions. Second, while implementation errors become 
dominant with increasing distance from the source, it is 
interesting to note that effective time-lag errors diminish 
rapidly compared with relative amplitude deviations. In 
other words, although spherical wavefronts may be reason- 
ably approximated as locally plane at a given range from the 
source, spherical divergence can remain a significant factor. 
Note that this observation and the comparatively minor 
deviation between relative amplitude coefficients a,(j) and 
a,(j), illustrated in Figure 1 lb, are consistent with the 
relatively rapid convergence of time-domain array responses 
for spherical and modified plane waves in the previous 
section. It is emphasized, however, that despite a significant 
reduction in relative amplitude deviation, relative time-lag 

0.0 2.0 4.0 
Xm 

errors are identical in Figures lla and Ilb, reflecting a 
fundamental limitation of any plane wavefront approxima- 
tion. 

The foregoing observations can be generalized for an 
arbitrary midpoint offset, image source depth, and aperture 
width in terms of two non-negative, dimensionless parame- 
ters (TV = 61x,, and oI = z,/x,. Defining relative amplitude 
deviations as 

and 

eW = o.,(j) - 1 (38) 

o,(j) - a,(j) 
E a,,, = 

aP (j) 
(39) 

for plane and modified plane-wave approximations, respec- 
tively, the relative time-lag deviation by 

At,(j) - jAt, 
Et = 

jAt, 
(40) 

and assuming a three-element array, so that maximum 
deviations occur for j = +(N - 1)/2, we obtain the 
corresponding nondimensionalized expressions for maxi- 
mum relative deviation 

(41) 

(42) 

(43) 

0.0 2.0 4.0 
Xm 

FIG. 11. Relative deviation of amplitude coefficient o,(j), and effective time lag At,(j) from (a) conventional plane-wave values: 
A = (o,(j) - l), 0 = [(At,(j)/jAt,) - 11, and(b) modified plane-wave values: 0 = [(cy,(j)/cw,(j)) - 11, 0 = [(At,(j)/jAt ) 
_ 11. Solid curves connect discrete values for a seven element array deployed with midpoints at 0.0, 1 .O, 2.0, and 3.0 m. TI?e 
image source is located x = 0.0 m, z = 2.0 m. 
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In fact, geometrical analysis indicates that except for E,, Figures 12a and 13a are more complicated due to singulari- 
whenj < 0 and 1 < aA < {l + 2(1 + ~z)l’~[l - a,(1 + 
uz ) ’ -“*I “2}, the foregoing expressions are valid for arbi- 

ties in the relative amplitude coefficients aP( j) and a,S(j) 
defined by equations 32 and 33, respectively. In particular, 

trary N as illustrated below. for an image source at the surface (u; = 0) and an aperture 
Figures 12b and 13b display ;,,(A) and c,,(n), respec- width equal to twice the midpoint offset (ul = l), the j = 

tively, for j = (N - 1)/2 together with the associated -(N - 1)/2 detector coincides with the source causing the 
relative time-lag deviation E,(O) as functions of the dimen- amplitude coefficient for spherical incidence to be infinite. 
sionless parameters Us and uz. The contour interval is 5 The same situation arises for the modified plane-wave coef- 
percent. Corresponding distributions for j = -(N - 1)/2 in ficient, however, in this case a similar condition occurs for 
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FIG. 12. Maximum relative amplitude (A) and time-lag (0) deviations from conventional plane-wave values as functions of 
dimensionless parameters Us = S/x, and uz 
depicted for z, 

= 2,/x, for (a) j = -(N - 1)/2 and (b) j = (N - 1)/2. Discrete mappings are 
= 2.0 m, 6 = 1.0 m and x,, = 1 .O, 2.0, and 3.0 m. Compare predicted errors with Figure lla. 
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FIG. 13. Maximum relative amplitude (0) and time-lag (0) deviations from modified plane-wave values as functions of 
dimensionless parameters ub = 6/x, and uz = z,/x, for (a) j = -(N - 1)/2 and (b) j = (N - 1)/2. Discrete mappings are 
depicted for z, = 2.0 m, 6 = 1.0 m and x, = 1 .O, 2.0, and 3.0 m. Compare predicted errors with Figure llb. 
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all uZ satisfying uZ = m. It is evident from equation 
(39) that lim,,(j)_r ea,n = - 1 and, consequently, this 
condition corresponds to the c a,n = 100 percent contour in 
Figure 13a. Finally, Figure 14 is a hybrid of Figures 12a and 
12b, depicting the overall maximum deviation as a function 
of (TV and uZ. For the modified plane-wave approxima- 
tion, relative deviations are always maximum for j = 
-(N - 1)/2. 

To illustrate the systematics of these generalized error dis- 
tributions, we return to the specific example illustrated above 
(Figure 11). Fixing Z, = 2.0 m and 6 = 1 .O m, array midpoint 
offsets of 1 .O, 2.0, and 3.0 m have one to one mappings (U~, u:) 
= (1.0, 2.0), (0.5, l.O), and (0.33, 0.67), respectively. As 
illustrated in Figures 12-14, these points define a line having 
slope z,/S = 2.0 and passing through the origin. Moreover, as 
the midpoint offset increases, its mapping approaches the 
origin and, in general, this trend is accompanied by a reduction 
in associated relative deviations. In particular, Figure 14 indi- 
cates that the relative time-lag error becomes less than 10 
percent for Us = 6/x, < 0.4 or x,,, > 2.5 m. Concurrently, in 
agreement with previous observations, the relative amplitude 
deviation diminishes less rapidly falling to 10 percent in this 
case at approximately u?, = 0.1 or x,,~ = 10 m. On the other 
hand, for an arbitrary value of u?, , increasing u;, or effectively 
increasing the image source depth, generally reduces relative 
amplitude deviations more rapidly than relative time-lag devi- 
ations. Indeed, as expected for an image source at infinite 
depth, the corresponding line on Figures 12-14 has infinite 
slope and consequently resides on the ordinate axis where all 
relative deviations vanish. 

4.0 

3.0 

1.0 

0.0 
0.0 1.0 2.0 

OA 

FIG. 14. Composite of Figures 12a and 12b, displaying 
overall maximum deviations from corresponding conven- 
tional plane-wave values. Note that Figure 13a is the equiv- 
alent distribution relative to corresponding modified plane- 
wave values. 

In general, the foregoing error analysis reveals that the 
magnitude of effective implementation errors required to 
compensate an inappropriate plane-wave assumption are 
primarily controlled by the ratio of reflector depth to aper- 
ture width. Moreover, relative amplitude and time-lag devi- 
ations diminish at rates governed by the previous parameter 
as the array’s midpoint offset becomes large, compared with 
both reflector depth and aperture width. Finally, as demon- 
strated by Newman and Mahoney (1973), the response of the 
uniform array is least influenced by implementation errors 
and, consequently, departures from design assumptions, 
including plane incidence. As a result, relative errors arising 
from a plane-wave approximation are significantly magnified 
in the case of optimally weighted arrays. 

In closing, it is noted that this investigation was partly 
motivated by suspicion that the viability of array filtering for 
ground roll attenuation in small-scale seismology might have 
been inappropriately dismissed on the basis of a plane-wave 
assumption. Knapp and Steeples (1986) sought to maximize 
array length subject to attenuating the highest signal frequency 
by less than 3 dB and although not expiicitly stated, subsequent 
analysis assumed plane incidence, concluding that 6,,, = 
O.l25ik-,,,(z,/2) - 0.28/k,,, , where the argument z,/2 implies 
that maximum offset is taken equal to reflector depth. In a 
related discussion, Mayne (1987) confirmed the foregoing re- 
sult for a two-element array and noted that for an array having 
a large number of elements, the correct relation is S,,, - 
0.48/k,,,. From Figure 4, for example, we note that the 
corresponding relation for a seven-element array is S,,, - 
0.43/k,,, Although S,,, can be theoretically underestimated 
assuming plane incidence, frequency-domain analysis, using 
equations (34) and (35) withf = f,,,, and A?, evaluated for x, 
= z,i2, indicates that the effect is negligible for a wide range of 
plausible field parameters. Consequently, the present study 
supports the validity of a plane-wave assumption in this con- 
text and reinforces the conclusion that array filters are not 
optimally suited for small scale applications. This does not, 
however, exclude the use of spatial filtering, and it is empha- 
sized that where less stringent performance criteria are ac- 
cepted, the deviations between spherical and plane-wave re- 
sponse functions can be significant, particularly over the reject 
band. In conclusion, although plane incidence remains a useful 
working assumption for smaller scale seismic applications, 
some measure of sober second thought is warranted. 
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