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Diffraction-based velocity estimates from optimum 
offset seismic data 

Guy M. Cross* and Michael D. Knoll* 

ABSTRACT 

A graphical method is characterized for estimating 
seismic velocity directly from diffraction patterns ob- 
served on common offset records. The nature of the 
resulting estimate is examined by illustrating the con- 
nection between the graphical approach and a related 
method used by practitioners of ground penetrating 
radar. While the latter provides only a crude stacking 
velocity, the graphical technique yields the general- 
ized rms velocity for stratified media. Associated 
interval velocities can be derived from two or more 
diffraction events having their sources within the plane 
of survey. Where there is a lack of geological evidence 
to suggest that scatterers reside in-plane, we propose a 
simple strategy for locating a scatterer from its expres- 
sion on two or more independent records. Error in the 
resulting location is directly related to subsurface 
velocity heterogeneity. Finally, since the diffraction- 
based velocity estimates assume that source and re- 
ceiver are coincident, the error stemming from non- 
zero offset is characterized. 

INTRODUCTION 

The Terrain Geophysics Section of the Geological Survey 
of Canada pioneered and, since the early 198Os, has popu- 
larized the optimum offset technique for high resolution 
shallow seismic profiling (Hunter et al., 1984; Hunter and 
Pullan, 1989). The method relies on preliminary expanding 
offset noise tests to identify a range of source-receiver 
offsets over which the reflection from a given target interface 
is received with minimum interference from source-gener- 
ated noise. An optimum offset, selected from within this 
range, is then used to acquire single fold soundings along 
profile. 

Compared with suitably scaled CDP techniques (Knapp 
and Steeples, 1986; Steeples and Miller, 1988), optimum 
offset profiling is conceptually less complicated and has the 
advantage of requiring little, if any, post acquisition data 
processing to yield an interpretable result. In part, however, 
this advantage is sacrificed by the need to collect and 
analyze supplemental multifold data to determine a velocity 
function for depth conversion. To reduce the need for these 
additional data, we propose to make greater use of moveout 
information supplied by diffraction events to derive supple- 
mental velocity estimates directly from common offset data. 
In addition, since these estimates require only a pencil and 
ruler, they represent a convenient source of velocity infor- 
mation in the field. 

Diffraction-based velocity analysis is familiar to practi- 
tioners of ground penetrating radar (GPR) where data are 
acquired almost entirely in common offset mode. Here we 
characterize the relationship between a simple method used 
there and another more robust technique that leads naturally 
to a meaningful interval velocity function. Finally, while 
source and receiver components of GPR systems are often 
effectively coincident and seldom separated by more than a 
meter, this is not the case for optimum offset seismic 
acquisition. Consequently, we examine the effect of nonzero 
offset on transit time within a constant velocity medium and 
evaluate the corresponding influence on apparent velocity. 

Previous studies (Dinstel, 1971; Larner et al., 1983: Tsai, 
1984) have examined the appearance of scattered energy in a 
variety of acquisition and display formats, but have focused 
principally on CMP gathers and the suppression of these 
events by stacking and velocity filtering. We are concerned, 
instead, with diffractions in the common offset domain and 
the velocity implied by transit time moveout as a fixed 
spread traverses the scatterer. 

POINT DIFFRACTIONS ON COMMON OFFSET RECORDS 

Consider a point diffractor within a homogeneous, isotro- 
pic half-space as depicted in Figure I. A rectangular coordi- 
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nate system is chosen so that scattered energy detected by 
an optimum offset survey along the x--axis has minimum 
arrival time when the spread midpoint is at the origin. With 
the spread so positioned, a line segment joining the scatterer 
and the midpoint is normal to profile and, consequently, 
minimum length, Note that this implies a scatterer residing in 
the yz-plane. 

For source at (X, , 0, 0), receiver at (X, , 0. 0), and point 
diffractor at (0, Y,, Z,), the appropriate transit time
expression is 

I 
t = v [(X: + r?) ‘Q + (Xi + ‘.l) IQ], (I) 

where V is a constant velocity and r = (Yi + Z$ “’ is the 
distance from the origin to the scatterer. Expressing source 
and receiver positions in terms of spread midpoint X,v and 
optimum offset Ax = X, - Xs as 

Xs = X,u - Ax12 
(2) 

XR = X,u + Ax12 

we obtain the equivalent relation 

f = ; {[X,v - AX/~)’ + r2] ‘I2 + [(X,,,,, + AX/~)’ + v’] I’?}. 

(3) 

For the time being, we shall consider the case of coinci- 
dent source-receiver. Setting Ax = 0 in equation (3) and 
squaring both sides yields for zero offset transit time

4X2 
t2=I;+CIZ, (4) 

FIG. 1. Point scatterer model and reference coordinate 
system. X,, Xicl, and XR denote source, midpoint, and 
receiver positions along the x-axis. Y, and Z1, are, respec- 
tively, they and z coordinates of a point diffractor residing in 
the yz-plane. X,, denotes the position of a coincident 
source-receiver pair. 8 and CY. are, respectively, takeoff and 
azimuthal angles for the ray joining (X,, , 0, 0) and (0, Y,, 
Z,). 

where t” = 2riV is the minimum arrival time for scattered 
energy detected by a coincident source-receiver. Although 
we have dropped the subscript on XM to simplify notation, 
we remind the reader that this variable specifies midpoint 
position along profile and should not be confused with 
optimum offset, Ax. Having said this, however, note the 
obvious similarity between equation (4) and the CMP transit 
time relation for reflection from a dipping planar interface 
(Levin, 1971). In the latter case, transit time is measured as 
a function of offset about a constant midpoint rather than as 
a function of midpoint location for a common offset. Both 
events are hyperbolic. 

VELOCITY ESTIMATES FROM DIFFRACTIONS 

The diffraction pattern resulting for an arbitrary point 
scatterer is illustrated in Figure 2a. As for the case of 
reflections, a reasonable estimate of the constant velocity V 
can be obtained by exploiting the linearity of equation (4) in 
X’ versus I’ space. As depicted in Figure 2b, the diffraction 
hyperbola maps to a line having intercept to’ and slope 4/V*. 
Rather than determine the arrival time of scattered energy at 
numerous midpoint locations and perform the required linear 
regression. practitioners of ground-penetrating radar have 
commonly pursued a more direct approach (Ulriksen, 1982: 
Daniels, 1989). Having identified the apex of a diffraction 
event (0, f(,) together with any additional point (X, t) 
(Figure 2a), velocity is derived directly from equation (4) as 

In effect. this amounts to specifying the intercept (0, ri) and 
a second point (X’. r’) on the line described by equation (4) 
and is, ideally. equivalent to the corresponding two-point 
slope estimate (Figure 2b). It follows that, in practice, 
velocity estimates obtained from equation (5) are particu- 
larly sensitive to measurement error associated with arrival 
times. 

Implicit differentiation of equation (4) with respect to the 
midpoint variable X gives 

VI =4XdX_ 2x 

t dt tpx cos a ) 
(6) 

where dt/dX = 2p, cos cx is the slope of a local tangent to 
the diffraction event at (X, t). The reader should recognize 
that px is the equivalent Snell parameter with cx = tan’ 
(YJX) denoting the azimuthal angle as depicted in Figure 1. 
As Gonzalez-Serrano and Claerbout (1984) have demon- 
strated for the case of reflection events on CMP gathers, 
equation (6) suggests an alternative approach for estimating 
velocity directly from the constant offset record. In this 
approach, the interpreter must supply a local slope estimate 
but need not specify the minimum arrival time t0 required by 
equation (5). Although the errors in these measurements are 
comparable, equation (6) is less prone to propagating transit 
time uncertainties. Also, by incorporating the local slope of 
the scattering event, equation (6), if only by eye, involves a 
sort of curve fitting to the entire event. Consequently. in 
addition to yielding velocity directly from the constant offset 
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profile, we expect equation (6) to provide a relatively robust 
estimate. 

Now, having set out the basic concepts assuming a uni- 
form medium, let us examine the more interesting situation 
where velocity is vertically variable. It is in this context that 
we shall discover the connection between the two direct 
velocity estimates described above. Consider a point scat- 
terer within a stack of horizontal isovelocity layers having 
thickness zk and velocity vk as depicted in Figure 3. Let us 
assume, for the moment, that scattered energy has taken the 
path of least distance from source to scatterer and back to 
the coincident receiver. Under this straight ray assumption, 
transit time is predicted exactly by equation (4) upon replac- 
ing the uniform velocity V by the appropriate average 
velocity 

(7) 
10 I=, 10 /;=I 

where TV = 2~~11~~ is the two-way vertical transit time
within the kth layer and 

n n 7 

To= 2 r1=2 2 % (8) 
k=l k=, “k 

Here, To is the two-way transit time for an in-plane scatterer 
located vertically beneath the coincident source-receiver 
and should be distinguished from to, the minimum two-way 
transit time for an arbitrary scatterer. The two are equivalent 
only for a diffractor within the plane of survey (cos c1 = 1) as 
depicted in Figure 3. Now, if ilk and zx are chosen so that 
V, = V, the corresponding diffraction event and its mapping 
in X2 versus 1’ are the same as for the case of uniform 

K40,0) 

m4to) 

uJ,%t’) 

K4w 

1 

ow,0) 

velocity in Figure 2. This is not surprising since equation (4) 
was derived under the same straight ray assumption. In 
short, all that we have said regarding the case of uniform 
velocity holds for stratified velocity, assuming that scattered 
energy takes the path of least distance. Most importantly, 
the velocity predicted by equations (5) and (6) remains 
constant for all values of X. 

In practice, scattered energy reaching the receiver has 
actually taken the path of least time in accordance with 
Fermat’s principle. Compared with the straight ray case, the 
path of least time reduces transit through lower velocity 
layers while increasing the distance traveled at higher veloc- 
ities as suggested in Figure 3. Consequently, as the designa- 
tion indicates, transit time via the least time path is always 
less than or equal that by the corresponding straight raypath. 
In particular, least time and least distance paths are equiv- 
alent only for an in-plane scatterer located vertically beneath 
the coincident source-receiver. Otherwise, as X increases, 
the actual two-way transit time is progressively less than that 
predicted, assuming straight ray geometry. This effect is 
illustrated in Figure 2a for an in-plane scatterer. The actual 
two-way transit time is denoted by r’ for comparison with 
the corresponding least distance arrival time t for the same 
arbitrary midpoint location. 

As for the case of reflection from a plane horizontal 
interface (Dix, 19551, the true diffraction event is nonlinear 
in X’ versus t’ (Figure 2b), indicating that equation (4) is, 
strictly speaking, inappropriate for stratified media. Despite 
this limitation, it follows from Dix’s small spread analysis 
that for X small compared to depth, Zu = Z[=, zk, equation 
(4) yields a sufficiently accurate prediction of transit time
when the uniform velocity V is replaced by the root-mean- 
square (rms) velocity 

W2,W) 

FIG. 2. Model transit time curves. (a) Solid curve relates transit time and midpoint position for both a uniform 
medium and straight rays in a stratified medium having an equivalent average velocity. Dashed curve describes true 
transit time-midpoint relation for a stratified medium. Dotted curve represents transit time-midpoint relation 
implied by equation (5). (b) Selected portion of corresponding curves in coordinates X’ versus t’ . 
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the meaning of the velocity furnished by equation (5). In 
fact, there is not much physical significance that can be 
attached to the estimate. The only description we can give is 
to say that it amounts to a very crude stacking velocity. If we 
assume that a stacking velocity V, is defined by least It can be demonstrated (Taner and Koehler, 1969) that 

equation (4), with V = V,,, , is a two-term truncation of the 
Taylor series expansion for t*(X) about the point X = 0. A 
third term, in X4, is always negative, except in the limiting 
case where v, = ‘LJ? = , . . . , = 11,~ or, equivalently, I/,,, = 
V, = V. This implies uniform velocity and all higher order 

squares fitting equation (4) to the observed event with V = 
V,y (Al-Chalabi, 1973), we have 

terms beyond X’ are zero. 
In light of the foregoing discussion, let us now examine the 

nature of velocity estimates obtained from equations (5) and 
(6) for an in-plane scatterer where the tlk are not all equal. 
Although the actual event is known to be nonlinear in Xz 
versus t*, the estimate obtained by equation (5) assumes 
that it is linear. In other words, the resulting velocity 
estimate implies the hyperbola through (X, t’) depicted in 
Figure 2a. Consequently, it is the slope of the corresponding 
line joining points (0, t(:) and (X’, r’*) in Figure 2b that 
defines the velocity given by equation (5). Referring to the 
same figures, we can characterize the resulting estimate as 
follows. First, the velocity obtained is clearly dependent 
upon the variable X and increases as /Xl. Second, it is 
obvious that this estimate will always exceed the average 
velocity defined by equation (7). Last, as we shall discover 
shortly, the estimate given by equation (5) can never exceed 
the generalized rms velocity, V,,, (p,), that is defined for 
the case px = 0 by equation (9). Although these observa- 
tions provide a comparative context, we have yet to describe 
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FIG. 3. Stratified earth model depicting both true and straight 
two-way raypaths joining a coincident source-receiver at (X, 
0, 0) with an in-plane diffractor at (0, 9, Zo). The Z!k, zk and 
Ok (k = 1, 2, 3, . . . , n) denote velocity, thickness, and ray 
angle, respectively, for the kth layer. 

i= I i= I i=l 

where m is the number of (X, t) pairs defining the estimate. 
Note that given just two points. (0, to) and (X, t’), equation 
(10) reduces directly to equation (5). Unfortunately, as for 
the case of uniform velocity, there is little statistical signif- 
icance associated with a two-point estimate. 

Equation (6), on the other hand, yields a velocity estimate 
that is directly related to physical parameters. Returning to 
Figure 3, we observe that the midpoint variable X can be 
expressed in terms of discrete layer parameters as 

n cos (Y n 
x = c xk = 2 2 Vktk sin ok, (11) 

k=l h=I 

where tk = Tk/cos ok = Tk/(l ~ p_~u~)“* is two-way transit 
time measured along the raypath within the kth layer, .rk = 
(ukfk/2) sin ok is the horizontal component of the raypath in 
the kth layer and ok is the angle between the ray and vertical. 
For the particular case of an in-plane scatterer, cos (Y = I. 
Recalling that Snell’s law requires the ray parameter px = 
sin nk/“k to be independent of layering, we can bring this 
constant outside the summation in equation (11) to yield 

px cos u. n 
x= 

2 
c &. (12) 

L=l 

Finally, using equation (12) and recognizing that t = zi=t 
tk, we can rewrite equation (6) as 

v* = i & I i tk = v,,,,(Px). (13) 
k= I / h=I 

We discover, as a result, that the velocity yielded by 
equation (6) is the same generalized rms velocity presented 
by Shah and Levin (1973). Moreover, as alluded to above, 
equation (13) reduces to Dix’s rms velocity defined by 
equation (9) for the case px = 0. In addition to proving that 
V,&,(p;)never decreases as X increases, Shah and Levin 
demonstrated that the generalized rms velocity is bounded, 
as expected, by the smallest and largest vI, in the section. 
The first of these conclusions follows from equation (6) and 
is tantamount to observingthat !heiornl~~l~p~~fth~~v~tin 
X’ versus t’ is always decreasing (Figure 2a). 

Following the lead of Gonzalez-Serrano and Claerbout 
(1984) and Claerbout (1985), we realize that by incorporating 
the ray parameter, equation (6) also leads naturally to 
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interval velocities from two or more in-plane diffractions. In 
practice, we choose a tangent line having slope dt/dX = 2p 
and subsequently determine, for each event, the respective 
point of tangency (X, t(X)), where X is measured relative to 
the respective apex. Now, treating the vertical interval 
between two in-plane scatterers as an effective unit having 
interval velocity 7fi, it follows from equation (12) that 

Consequently, recognizing that the two-way transit time
through the interval t, must account exactly for the differ- 
ence in total transit time

I I- I 

t(Xi) - t(Xi I ) = C t,! - C th = fj, (15) 
h=I k=I 

we find that the interval velocity can be obtained directly as 

2 
$(p) = - 

(X; -xi-I) 

P IrCXi) - t(Xi - I )I 
(16) 

Alternatively, upon establishing the tangent point for each 
event, we could have proceeded by evaluating equation (6) 
for the associated rms velocities. Then, with these in hand. 
the interval velocity follows from a straightforward re- 
expression of the previous equation 

v,?(p) = 
vkl\,~(P)r(X~) - vb,,i- I(PJt(Xj- 1) 

t(Xi) - t(Xj - I ) 
(17) 

This expression reveals that 71; is, in particular, the rms 
interval velocity. Equation (17) is simply a generalization of 
the interval velocity due to Dix (1955) in the same sense that 
equations (13) and (9) are related (Nowroozi. 1989). The 
significance of rms interval velocities, compared with other 
varieties, has been discussed by Al-Chalabi (1974) and 
Hubral and Krey (1980). In short, although we view the 
interval as practically homogeneous, it generally includes 
some degree of velocity heterogeneity. We anticipate that 
intervals bounded by diffraction events are more likely to 
possess significant heterogeneity than those established on 
the basis of major reflection events. In fact, since reflection 
events are direct manifestations of velocity contrasts, we 
suggest that accompanying reflection information should aid 
in assessing the extent of velocity heterogeneity within an 
interval defined by diffractions. If heterogeneity is insignifi- 
cant within the interval, its thickness is given by 

2 z’l(P)‘[r(Xi) - t(Xi- I )I' 
7, zz 

4 
~ (X; -x,_ ,)‘. (18) 

LIMITATION FOR OUT OF PLANE DIFFRACTIONS 

To this point, our treatment of a horizontally layered 
section has focused on scatterers residing in the plane of 
survey. We now emphasize that apart from our discussion of 
interval velocities, the foregoing analysis holds quite gener- 
ally for an arbitrary scatterer. The velocity yielded by 
equation (6) is an estimate of the rms velocity described by 

equation (13) independent of the scatterer’s location. Unfor- 
tunately, the estimate is of little use in the absence of 
associated depth control. As regards interval velocities, 
recall that the diffraction pattern for an arbitrary scatterer 
has local slope dt/dX = 2p, cos a. Unlike the special case 
for in-plane diffraction events where cos (Y = I, energy 
radiated from arbitrary scatterers via the same ray parameter 
cannot, in general, be identified on the basis of a unique local 
slope. Strictly speaking, even though the factor cos (Y has 
less influence as pI increases, the graphical method de- 
scribed above is appropriate only for in plane diffractions. 
Thus, to associate diffraction-based velocity estimates with a 
corresponding depth or stratigraphic unit, we must either 
assume that scatterers reside in plane or determine their true 
locations. For this reason, an obvious means of deriving the 
location of a scatterer from its expression on two or more 
profiles is described below. Although the result is only 
approximate for stratified media, we shall discover that the 
error is related to velocity heterogeneity. First, we return to 
the case of uniform velocity. 

Consider, once again, a point diffractor within a constant 
velocity medium as depicted in Figure 1. Recall that our 
reference coordinate system was chosen such that the scat- 
terer resides in the vz-plane. We found, on assuming coin- 
cident source-receiver, that the observed diffraction pattern 
is described exactly by equation (4). Consequently, the 
velocity predicted by equations (5) and (6), is independent of 
the scatterer’s location. Having emphasized this, let us 
examine the significance of the constant to in equation (4). 

For a given event, t,, = 2riV is the minimum arrival time
for scattered energy detected by a coincident source-re- 
ceiver. Recall that for a point scatterer at (0, Y1,, Z,), r = 

(YA + 2;) ‘I2 is the length of a line segment joining the 
scatterer and the origin. It is important to appreciate that the 
diffraction event observed for this scatterer is not unique. 
The very same diffraction pattern would result for any 
scattering source located at (0. y, ,-) satisfying J” + z2 = 
/.2 = y’ 1l + Zi: that is, for any scatterer residing on a 
semicircle of radius r from the origin in the yz-plane. It 
follows that upon identifying events having a common 
source on two or more optimum offset profiles. the scattering 
source may be located identically. Profiles need not be 
parallel but this aids in identifying common events since 
their apexes must occur at the same traverse position. The 
strategy is illustrated in Figure 4 for a profile acquired along 
the s-axis (y = 0) and a second parallel profile at y = Y. 
Assuming common diffraction events have been identified on 
both records and velocity estimates subsequently obtained, 
arcs of radii r \’ = o = Vr,,,,,/2 and r? = y = Vt,,,JZ are 
constructed from respective centers, .v = 0 and y = Y. The 
scatterer is located at the intersection of the resulting arcs. 

Prior to examining the analogous scenario for a true 
stratified media, it is again useful to consider the hypothet- 
ical case of straight rays in a uniform medium having the 
effective average velocity. Under this assumption, equation 
(4) continues to describe the resulting diffraction pattern if 
we only replace the constant velocity V by the average 
velocity defined by equation (7). Using average velocity 
estimates from events observed for y = 0 and r = Y, we 
could proceed as described above. Intersection of the result- 
ing arcs would once again imply the scatterer’s location as 
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illustrated in Figure 5. We have also depicted what we shall Practically speaking, however, caution is advised since local 
call “straight ray wavefronts” for t(,,,) and to,r. These are slope estimates are obviously subject to greater error as X 
just the loci of endpoints for straight rays that leave a given decreases. Having issued this warning, let us suppose for the 
source at arbitrary take-off angles and are extended at the time being that we are able to estimate the appropriate rms 
appropriate layer velocities for half the corresponding apex velocities at X = 0 for the pair of diffraction events 
time We observe that the intersection of these so-called considered in the foregoing examples. Arcs having the 
wavefronts and, consequently, the scatterer’s true location appropriate radii are subsequently constructed as illustrated 
coincides with that of the experimentally determined arcs. In in Figure 6. We have also displayed the true wavefronts for 
other words, if the straight ray assumption were valid, our to.0 and ~o.Y. Like the hypothetical straight ray wavefronts 
simple strategy would also properly locate scatterers within in Figure 5, intersection of these wavefronts marks the 
stratified media. actual location of the scatterer. But, in contrast to the 

We turn now to the actual situation for a horizontally previous examples. intersection of the experimentally de- 
layered section. Recall that the observed diffraction event is rived arcs only approximately locates the scatterer. To 
really a record of transit time for scattered energy that takes provide a sense of scale, the model parameters resulting in 
the path of least time to and from the scatterer as a function Figures 5 and 6 are as follows: Y1, = 60.0 m, Z, = 50.0 m, 
of X. Here, equation (4) approximately describes the actual z ] = 10.0 m, 71, = 750.0 m/s. z? = 20.0 m, 71~ = 1500.0 
event on replacing the constant velocity V by Dix’s rms m/s, z3 = Z,, - (z, + z?) = 20.0 m, 7j3 = 2500.0 m/s. The 
velocity or what amounts to equation (13) evaluated for p,,. = predicted location is Y1, = 65.1 m, 23 = 62.1 m. 
0. In practice, however, equation (6) yields the generalized The error is related to the difference between rms and 
rms velocity for some nonzero Snell parameters. Conse- average velocities. A measure of this difference can be 
quently, for the purpose of determining the scatterer’s expressed as 
location in the yz-plane, this estimate should be obtained for 
X as small as possible since V,,,( p,) increases with X. 
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where the Snell parameter p, is, in general. different for 
profiles at y = 0 and y = Y. Recalling that rms velocity 
always exceeds the corresponding average velocity, we 
recognize that this quantity must be strictly positive. In 
other words, neglecting other sources of error, the predicted 

FIG. 4. Location of point scatterer in uniform medium from 
depth for a given scatterer will always exceed the true value. 

two optimum offset profiles parallel to the x-axis at y = 0 Moreover, the sign of the corresponding error in YD depends 

and y = Y. Scatterer’s position (0, Y,, Z,) is indicated by on the relative magnitude of I’, ,, and ry= r. In particular. 
intersection of circular wavefronts having radii rV = ,, and the error is zero. Although, in practice. 
r?.,= y. Dashed curves are a qualitative suggestion of uncer- 

for I’?. : ,) = I’,. = r, 

tamty. 
a quantitative assessment of these errors will be difficult at 

ww (o,yD,o) (OvY,O) W,O) (%yD,o) (O,Y,O) 

FE. 5. Location of point scatterer in stratified medium 
assuming straight rays. Intersection of circular wavefronts 

FIG. 6. Approximate location of scatterer in stratified me- 
. . dium respecting Snell’s law. Intersection of circular wave- 
eased on average velocity esttmates coincides with that of “. . . . ,. srratgnr ray wavetronts . . . . . 

at the scatterer’s location. 
fronts-based on rms velocity estimates fails to coincide with 
that of true wavefronts at the scatterer’s location. 



best, there is an important qualitative relationship between 
the accuracy that can be expected and the velocity structure 
of the subsurface. For px = 0, equation (19) can be 
re-expressed as 

V&,(O) - v: 1 n ’ 

s(O) = 

VZ 

= z? .T Z/, i zj (Vh - vj)2. 

u h-l j=k+l I’/, Vj 

(20) 

Al-Chalabi (1974) used the term heterogeneity factor to 
describe this quantity, g(O), since it characterizes the veloc- 
ity heterogeneity of the subsurface. Where stratification is 
characterized by sparse but large velocity contrasts, the 
heterogeneity factor and more generally equation (19) will 
have large values. Consequently, we find that the uncer- 
tainty in our method for locating a scatterer is directly 
related to velocity heterogeneity. In particular, for the model 
parameters cited above, the heterogeneity factor has a value 
of g(0) = 0.2133. For comparison, the same model with 
weaker velocity stratification (vi = 750.0 m/s, v2 = 1000.0 
m/s, 11s = 1250.0 m/s) has a heterogeneity factor of g(0) = 
0.0360. In this case, the location procedure yields YD = 
61.3 m, Zu = 52.7 m. The improvement suggests that in 
many situations, particularly where diffractions have their 
origin within unconsolidated overburden, the procedure 
described here can yield an accurate location and conse- 
quently reliable depth control for the associated velocity 
estimate. 

Before proceeding, we return briefly to the assumption 
that velocity estimates could be obtained, using equation (6) 
at X = 0. As cautioned above, this cannot be achieved in 
practice and, consequently, the scatterer’s predicted loca- 
tion is subject to additional error. One means of reducing this 
added error is to obtain two or more velocity estimates for a 
given event at acceptable values of X and perform an 
appropriate extrapolation for the corresponding V,,,( p.r = 
0). We shall return to this issue in following sections. 

EFFECT OF NONZERO OFFSET 

The foregoing discussion and analysis of velocities from 
diffractions has assumed that source and receiver are coin- 
cident. Although one might expect that this assumption is 
warranted in interpreting ground penetrating radar data, that 
it is also appropriate for shallow seismic data is less evident. 
Let us now examine the effect of nonzero optimum offset on 
measured transit time as a function of midpoint position and 
the resulting influence on velocity estimates yielded by 
equation (6). Referring again to Figure 1, consider a point 
scatterer within a uniform velocity medium at a distance I’ = 
(Yi + Zi)“* from the origin. Recall that equation (3) 
describes the two-way transit time at midpoint location 
X, = (X, + X,)/2 as measured by a source-receiver pair 
located at (X,, 0, 0) and (X,, 0, 0), respectively, and 
separated by an optimum offset Ax = X, - X,. As this 
offset approaches zero, the transit time approaches that 
given by equation (4) and it is from this relation that 
equations (5) and (6) derive. 

In Figure 7a, we present a set of characteristic curves that 
specify the difference between zero offset and nonzero offset 
transit times Af as a function of XMir for Ax/r ranging from 

2076 Cross and Knoll 

0.1 to 50.0. Notice that the transit time difference is normal- 
ized by the normal incidence transit time tO = 2rlV and that 
the vertical axis is displayed in logarithmic format. These 
curves are symmetric about X,,,u/r = 0 and quantify the 
so-called Cheop’s pyramid effect described by Claerbout 
(1985). The effect is especially evident for large values of 
Ax/r where relatively stable plateaus near X,/r = 0 reflect 
the severely truncated apexes of the corresponding diffrac- 
tion event for IX,/Axl s 0.5. In absolute terms, we observe 
that the deviation between zero offset and nonzero offset 
transit times at X,w/r = 0 ranges from approximately 0.1 
percent of normal incidence time for Ax/r = 0.1 to nearly 
fifty times normal incidence time for Ax/r = 50.0. For 
Ax/r 5 5.0, however, this error decreases rapidly as X,+,/r 
increases. Of course, these departures from the hyperbolic 
nature of scattering events also influence velocity estimates 
predicted by equation (6) since this expression involves the 
local slope of the diffraction pattern. This influence is 
characterized by the corresponding curves displayed in 
Figure 7b. Here the deviation of the predicted velocity from 
the true value, AV, is charted as a function of XM/r for the 
same range of Ax/r. In this case, the deviation is normalized 
by the true velocity. Not surprisingly, the gross character of 
these curves resembles those for the corresponding transit 
time disparities but, in general, the relative error in predicted 
velocities is somewhat less and decreases more rapidly as 
Ax/r increases. From a practical perspective, these charac- 
teristic curves indicate that the error introduced by nonzero 
optimum offset is not prohibitively large except where Ax/r 
is very large. Otherwise, so long as we apply equation (6) at 
a reasonable distance from the apex of a diffraction event, 
the resulting error is quite acceptable. As a rule of thumb, 
estimates should not be made for IX/Ax1 < 0.5 and prefer- 
ably for lX/A.ul 2 2.0. Respecting this constraint, the error 
in predicted velocities resulting from nonzero optimum 
offset never exceeds 1 .O percent. An intermediate condition 
IX,,/Ax 2 I .O also limits error to 1 .O percent except over 
the range 0.25 5 Ax/r 5 5.0 where maximum error ap- 
proaches 5.0 percent. Unfortunately, this is precisely the 
range most frequently encountered in shallow seismology. 
Curves illustrating these criteria are displayed in Figure 7b. 

Finally, computational analysis indicates that inflation of 
velocity estimates resulting for nonzero optimum offset 
increases with velocity heterogeneity. In other words, Fig- 
ure 7b should be viewed as characterizing the limiting 
condition for g(O) = 0.0. Let us return, for example, to the 
situation considered in connection with Figures 4, 5, and 6. 
If we assume that 11, = 71~ = ~1s and an optimum offset of 
50.0 m, Figure 7b predicts that the velocity estimate yielded 
by equation (6) incorporates a maximum error of Al//V = 
0.05 due to offset. In comparison, the velocity model used to 
generate Figures 5 and 6 (z!, = 750.0 m/s, ~1~ = 1500.0 m/s, 
if3 = 2500.0 m/s) has a heterogeneity factor of g(0) = 0.2 133 
and yields a computed error of AV,,,/V,,,( px = ,,) i= 0.085. 
In turn, the more weakly stratified model (-ill = 750.0 m/s, 11~ 
= 1000.0 m/s, 7~s = 1250.0 m/s), having a heterogeneity 
factor of g(0) = 0.0360. results in an intermediate error of 
AVrm,/Vrm,(p., = (,) = 0.065. We qualify these findings by 
stating that for all cases examined, the influence of velocity 
heterogeneity diminishes rapidly as XM/r increases. In par- 
ticular, for the cases cited above, the departure of observed 
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error from that predicted by Figure 7b becomes practically 
negligible by X,+,./Y = 2.0. Bearing this in mind, we re- 
emphasize that the effect of nonzero offset is not the only 
consideration restricting velocity estimates near X = 0. As 
alluded to earlier, elevated uncertainty in the measurement 
of local event slope dt/dX in the region about X = 0 imposes 
an additional limitation. 

CONCLUDING DISCUSSION 

In closing, we present a purely demonstrative example to 
illustrate the mechanics of the method. Figure 8 is a portion 
of an optimum offset section (BB-900) acquired by the 
Geological Survey of Canada on the Fraser River delta, 
British Columbia (Pullan et al., 1989). The format is the same 
as for Figure 2a with the origin located directly over the apex 
of the analyzed scattering event at approximately 67.5 ms. 
The optimum offset was 24.0 m and the trace interval is 3.0 
m. 

Local tangents to the diffraction pattern are established at 
distances of X, = 45.0 m, XZ = 60.0 m and X3 = 75.0 m 
from the origin. ‘These tangents have measured~ slopes of 
(dtid.~) 1 = 0.595 msim. (dtidx), = 0.673 msim and (dtidx), 
= 0.733 msim. The respective two-way transit times are t, = 
81.9 ms, tZ = 91.1 ms, and t3 = 100.8 ms. Using these 
values, equation (6) yields corresponding rms velocities of 
approximately VI = 1922 m/s. V2 = 1979 m/s, and V3 = 
2015 m/s. That these estimates increase with distance from 
the origin is consistent with our analysis of stratified media 

and, consequently, we view these estimates as generalized 
rms velocities defined by equation (13). Moreover, as we 
have only marginally violated the restriction IX/Ax1 2 2 and 
there is no seismic evidence for strong velocity heterogene- 
ity, these estimates should be accurate to within about 1 
percent of the true rms velocities. Of course, the presence of 
uncertainties in the measured values cited above produces 
additional error. In the present case, we estimate that this 
additional error is less than 5 percent but may approach 10 
percent, depending on the quality of data. An accompanying 
depth scale supplied by Pullan et al. and based on a series of 
borehole velocity surveys, places the apex of the diffraction 
event at about 53.0 m and implies an average velocity of 
approximately 1570 m/s to this depth. To furnish a compar- 
ison with our findings, we perform a simple extrapolation to 
project the rms velocity at X = 0 from our estimates at X = 
45.0, 60.0 and 75.0 meters. Neglecting measurement errors, 
least-squares linear extrapolation yields an estimate of 1786 
m/s. Assuming an in-plane scatterer ( ps = 0 for X = 0)) the 
difference between this estimate and the average velocity 
dctermim&‘by Pullan et al. implies a heterogeneity factor of 
approximately g(0) = 0.29. However. since there is no 
apparent evidence for significant velocity heterogeneity, this 
value suggests that either the average velocity or the rms 
velocity is in error. 

Numerous sources of error exist. For example, the aver- 
age velocity structure used by Pullan et al. to generate the 
accompanying depth scale ignores the existence of lateral 
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FIG. 7. Effect of nonzero optimum offset for uniform media. (a) Normalized transit time error At = (~(Ax # 0) - 
t(.Ax = O))ltp(Ax = 0). (b) Corresponding normalized velocity error AV = (Vest, - V,,.,,,)/V,,,, (bold curves 
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velocity variations and this suggests the utility of diffraction- 
based estimates for local velocity control. Inconsistent ve- 
locities can also arise from diffractions occurring out of plane 
but, ordinarily, these events imply a velocity and, thus, a 
heterogeneity factor that is too low rather than high. In 
addition, modeling indicates that linear extrapolations yield 
results that are almost invariably too high. We have found 
that the consistency between predicted rms and average 
velocities can be improved in many cases by a more sophis- 
ticated extrapolation. These approaches can also backfire, 
however, primarily due to the effect of nonzero optimum 
offset. Finally, it is conceivable that the observed discrep- 
ancy arises purely from uncertainties in transit time and local 
slope measurements. 

In addition to illustrating the method we have described 
for diffraction-based velocity estimation, the foregoing ex- 
ample also suggests limitations on the interpretation of 
velocity estimates derived from a single diffraction. More 
substantial conclusions and improved confidence can be 
obtained by analyzing additional scattering events or multi- 
ple profiles. 
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